
Native Instrument Komplete Kontrol MK2

 MC Custom Script

Preinstallation Requirements and Instructions

There are two options in this script, the FULL and the Stripped-Down one.

In the Stripped-Down option, the following is missing:

- No browsing of instruments and effects plugins available via the Shift + Jog

Wheel turns. This is replaced by the default Cubase's presets browsing

functionality.

Apart from the above, all other functions are the same.

WARNING!

You really have to disable by renaming or moving to another

folder, the file C:\Program Files\Common

Files\Steinberg\Shared Components\KOMPLETE KONTROL S-

Series.dll which includes the original Native Instrument’s

Cubase implementation, upon testing my script. Otherwise,

there will be crashes, conflicts, and erratic controller’s

behavior.

I have just renamed this file by adding the number 2 after the

dll extension and it’s all good.

Note that you can always revert to the original NI’s Cubase integration by

renaming this file to its original name and by disabling my script.

[Applies to the FULL implementation. If you’re going to use the stripped-down version,

please skip this step]

If you’re going to use the full implementation of this script, you will need 2 virtual MIDI ports

(apart from the default ports of our Komplete Kontrol).

For this, I’m using loopMIDI (you can obviously use other virtual ports if you have) and my

ports are setup like this:

[Applies to BOTH implementations]

Open the MIDI Remote TAB in Cubase and then click on Open MIDI Remote Manager:

In the Midi Remote Manager window, click on Import Script:

In the File Dialog, choose the script’s file you’ve downloaded, and Cubase will install the

script and its components. The next step is to make some adjustments when needed.

[Applies to the FULL implementation. If you’re going to use the stripped-down version,

please skip this step]

If we do want to use the full implementation’s functionalities, there is another step involved,

apart from setting generalSettings.strippedDown =0 in the mapOfGeneralSettings.js file.

Setup for allowing changing plugins using our controller:

Open Cubase’s Studio->Studio Setup, click on Add Device and select Mackie

Control.

In the ports of this new item, assign loopMIDI Port 1 and loopMIDI port

respectively, as shown in the screenshot below, and click Apply.

 [Applies to BOTH implementations]

SETUP

MIDI ports setup

From inside Cubase, go to menu Studio-> Studio Setup → Tab Midi Port Setup and uncheck

the entry Komplete Kontrol DAW – 1 (this is its default port for DAW control) from the “In

‘ALL MIDI inputs’” column.

If using the full implementation, please uncheck the following ports too: loopMIDI Port and

loopMIDI Port 1.

Go back to Cubase and after selecting the MIDI Editor Tab click on the big PLUS button:

Fill the form as follows and click on the Activate MIDI Controller Surface button.

If you’re going to use the full implementation, you must fill in the form as follows:

Note (again) that this is the full implementation of the script. In this one we are using

apart from the Komplete Kontrol’s DAW Midi Ports, another one set, created by using the

loopMIDI utility, available from Tobias Erichsen’s website here: https://www.tobias-

erichsen.de/software/loopmidi.html .

If you have selected the stripped-down version (this is the default), Cubase most probably

will immediately recognize the connected device and set it up properly. However, in case it

does not, you must follow the previous screenshot, but this time, you have to simply select

the “Komplete Kontrol Daw-1” ports, the other two will not be visible.

https://www.tobias-erichsen.de/software/loopmidi.html
https://www.tobias-erichsen.de/software/loopmidi.html

Pages

The script creates the following pages:

- Mixer

- Focused Quick Controls

- Quick Controls (This refers to the instrument’s controls)

- Channel Strip (EQ, Input filter, Gate, Compressor, Tools, Saturation and

Limiter)

- Insert Effects

- Send Effects

- Commands Set 1

- Commands Set 2

- Commands Set 3

We can navigate through the various pages using the Left and Right arrow buttons of the

Komplete Kontrol:

Transport Buttons Section

Here we have the usual assignments, i.e., Undo (and Redo), Quantize, Auto Write, Loop,

Metro, Play (and Restart), Rec (and Count-In) and Stop.

However, in this script, I’ve made some additions, based on double-click functionality.

So, if we double click

- Quantize: We turn on/off the Auto Quantize mode

- Auto: We turn on/off the Auto Read mode

- Loop: We set Punch-In/Out locators, based on the direction we previously turned

our jog wheel (See Note about actions based on jog-turn direction)

- Metro: we can change the metronome’s click level by turning the jog wheel. After 2

seconds of inactivity (i.e., no longer turning the jog wheel after Metro’s double click,

jog wheel gets back to its original assignment)

- Play: We toggle Punch-In

- Play (while holding Shift): We toggle Punch-Out

- Clear: We cut head/tail of the selected event, based on the direction we previously

turned our jog wheel (See Note about actions based on jog-turn direction)

- Jog: We show/hide our plugin’s window

Jog (while holding Shift): We show/hide our track’s channel settings’ window.

The Jog Encoder Section

The Jog Encoder can be of great use, since we can literally have 13 assignments out-of-the

box, plus 2 implemented in this script by using double push.

So, we have:

nudge up, nudge down,

nudge left, nudge right,

turn left, turn left with Shift held,

turn left in state2 (that is when we previously pressed Shift + nudge up)

turn left with Shift held in state 2,

turn right, turn right with Shift held,

turn right in state2 (that is when we previously pressed Shift + nudge up)

turn right with Shift held in state 2,

push, Shift + push, and finally double push and Shift + double push.

For each of these actions, I have made a graphical representation in the MIDI Remote UI’s

window.

Let’s see how these actions are represented in our mixer page:

At the very first line, we see the notation followed in the next lines. This line tells us the

characters used in the other lines to denote a “state”.

The tells us that we have to use the Shift button when we meet the

sign.

The next one, tells us that we have to first turn our jog to state 2

before executing the action we want to. State 2 is turned on by holding Shift and nudging

our jog up. State 1 is turned on by holding Shift and nudging our jog down.

The other symbols

refer to the actions that can be taken when we nudge left/right, double push or turn

left/right our jog.

Now, let’s see two examples:

1. The sequence

Remembering our previous definitions, this means: Enable State 2, hold Shift and

Turn Left.

2. stands for: Hold Shift and Double Click (Push) the jog.

Hope it now makes sense. Example:

This means that if we go to state 2 (by holding Shift and then nudging up) and then hold Shift

and turn our jog right, we select the next quantize preset.

Another (simple this time) example:

This means that if we nudge left, we select the previous bank (be it a mixer bank or a plug-in

quick controls bank etc.)

I’m using this way of representing actions for each page of my script.

With a little bit of playing around with the assignments, I really think that most of them – if

not all - will come out naturally while moving/pushing the jog.

Note that, in each page, there may be different assignments to the jog functions, so at least

at the beginning, it’s advised that you read them on our midi remote’s UI.

Note about actions based on jog-turn direction

A short note about how the assignment Locator L/R to the simple push, works:

When we turn our jog left or right, the script memorizes the direction. So, if we now push

our jog down, depending on the direction, the script will set our left or right locator to the

current cursor’s position.

The same method is used when we double click Loop and Clear buttons:

When we double click Loop, based on the direction saved, the script sets our Punch-In (left)

or Punch-Out (right) locator to the current cursor’s position.

When we double click Clear, again based on the direction saved, the script performs either

Cut Head (left) or Cut Tail (right).

The “Main” Knobs and Button Section

I’ve tried to show in the UI all the assignments made per mapping page. For example, let’s

have a look at our Mixer page:

Here, we can see some differences from our real controller’s surface. So, instead of one, we

have three buttons for each column, and two knobs instead of the real one.

Buttons:

The very first row of buttons stands for the assignments made to our buttons.

The second row is for the assignments made to our buttons with the Mute button pressed.

The third row is for the assignments made to our buttons with the Solo button pressed.

So, in the mixer page, we see the (default in the NI’s original implementation as well) Select,

Mute and Solo assignments for each of the eight tracks of the currently selected mixer bank.

Knobs:

The first row is for the assignments made to our knobs,

The second row is for the assignments made to our knobs when we have set our controller

to its second state (State 2). This second state, as we know from the original NI’s

implementation, is activated by holding Shift and nudging our jog up. Returning to the first

(initial) state is done by holding Shift and nudging our jog down.

So, in the Mixer page, in state 2 as we see in the screenshot, this second row refers to the

pan attribute of our tracks.

Let’s see another example, from the EQ subpage of the Channel Strip Page:

Here, the first row of our knobs is for controlling Gain and Frequency of our four EQ bands.

The second row is for controlling the Q-Factor and Type of these bands.

Specifically in the case of this subpage, I have another set of assignments for the Q-Factor

and Type, without the need for moving to State 2.

If we hold Mute and click on On/Off button, we can change Q-Factor by using our knob. We

can return to controlling Gain by holding Mute and clicking on On/Off again.

Furthermore, we can select Type by pressing the corresponding buttons. The Type value is

increased with each press.

Another example, this time from the first Commands Page:

Here we see different assignments for our Select, Mute and Solo combinations.

For example, by holding Mute and pressing the fifth button, performs Cut, while by holding

Solo and pressing the same button, performs Cut Time.

Finally, please note that whenever we see text in brackets right below from our buttons, this

is to denote the assignment for this button. This is not showing on the UI, but on our

controller’s display.

Here’s an example from our Instrument’s Quick Controls’ page:

We see the ON, EDIT, BYPASS and BROWSE functions, all in brackets to denote that they are

assigned to our buttons.

General Settings

In the file mapOfGeneralSettings.js, we have the general settings which are used by the

script.

You can modify any entry you wish.

I’ve included comments to show what every setting does. You can alter their values to 0 or 1,

based on your preference.

Some of the functionalities described earlier, can be disabled/re-enabled by changing the

corresponding variables’ values (from 1 to 0 for disabling, or 1 from 0 for re-enabling).

Commands Sets

As written earlier, I have three pages of commands’ sets. You can alter the commands

bound, by editing the file mapOfCommands.js. Please follow the instructions provided in the

file’s comments.

Since this is a script which was built based on my personal workflow, I have setup some

Macros and Logical Editor Presets, that are used in these command sets, as well as factory

commands.

You can obviously edit these entries and setup your very own.

However, if you want these commands, you have to add them manually, here’s how:

Inside the scripts folder, I have placed two subfolders Logical_editor_presets and

MIDI_Logical_editor_presets, containing the logical presets xml files, I use in my

implementation. Feel free to import these to your own presets folder if you like them and/or

wish to alter them.

But, of course, you then have to create the corresponding macros. This means that you have

to manually edit your commands xml file unfortunately, but it surely can be done with not

too much effort (hopefully).

You can check the instructions inside the file “Instructions for importing my own logical

editor presets.pdf”.

