zzzzzzzzzz....

zzzzzz… (I’m using the Lounge as a space with super comfortable leather sofas, coffee tables and a large Irish whiskey). Where can I find the adrenaline-fueled controversial section please? :question:

I heard the Nuendo Syncstation forums are buzzing with activity.

Right here. It’s up to you t.

Just post your next ‘hot burning music topic’ that will
have many folks posting about and discussing it.

IMHO the current topic: ‘zzzzzzzzzzzz’ is a good start. :slight_smile:
It might work.


{’-’}

My fairy wears boots. Pink ones.

Wrong forum. :laughing:

If you don’t believe in Santa Claus you need beheddin.

Epinephrine (also known as adrenaline or adrenalin) is a hormone and a neurotransmitter. Epinephrine has many functions in the body, regulating heart rate, blood vessel and air passage diameters, and metabolic shifts; epinephrine release is a crucial component of the fight-or-flight response of the sympathetic nervous system. In chemical terms, epinephrine is one of a group of monoamines called the catecholamines. It is produced in some neurons of the central nervous system, and in the chromaffin cells of the adrenal medulla from the amino acids phenylalanine and tyrosine.

This chemical is widely referred to as “adrenaline” outside the United States; however, its United States Adopted Name and International Nonproprietary Name is epinephrine. Epinephrine was chosen as the generic name in the United States because John Abel, who prepared extracts from the adrenal glands in 1897, used that name for his extracts. In 1901, Jokichi Takamine patented a purified adrenal extract, and called it “adrenalin”, which was trademarked by Parke, Davis & Co in the U.S. In the belief that Abel’s extract was the same as Takamine’s, a belief since disputed, epinepherine became the generic name in the U.S. The British Approved Name and European Pharmacopoeia term for this chemical is adrenaline and is indeed now one of the few differences between the INN and BAN systems of names.
Among American health professionals and scientists, the term epinephrine is used over adrenaline. However, pharmaceuticals that mimic the effects of epinephrine are often called adrenergics, and receptors for epinephrine are called adrenergic receptors or adrenoceptors.

Extracts of the adrenal gland were first obtained by Polish physiologist Napoleon Cybulski in 1895. These extracts, which he called nadnerczyna, contained adrenaline and other catecholamines. Japanese chemist Jokichi Takamine and his assistant Keizo Uenaka independently discovered adrenaline in 1900. In 1901, Takamine successfully isolated and purified the hormone from the adrenal glands of sheep and oxen. Adrenaline was first synthesized in the laboratory by Friedrich Stolz and Henry Drysdale Dakin, independently, in 1904.

As a hormone and neurotransmitter, adrenaline acts on nearly all body tissues. Its actions vary by tissue type and tissue expression of adrenergic receptors. For example, high levels of adrenaline causes smooth muscle relaxation in the airways but causes contraction of the smooth muscle that lines most arterioles.
Adrenaline acts by binding to a variety of adrenergic receptors. Adrenaline is a nonselective agonist of all adrenergic receptors, including the major subtypes α1, α2, β1, β2, and β3. Epinephrine’s binding to these receptors triggers a number of metabolic changes. Binding to α-adrenergic receptors inhibits insulin secretion by the pancreas, stimulates glycogenolysis in the liver and muscle, and stimulates glycolysis in muscle. β-Adrenergic receptor binding triggers glucagon secretion in the pancreas, increased adrenocorticotropic hormone (ACTH) secretion by the pituitary gland, and increased lipolysis by adipose tissue. Together, these effects lead to increased blood glucose and fatty acids, providing substrates for energy production within cells throughout the body.

That adrenaline-fueled enough for ya?